Hi everyone,

I am trying to implement a basic Markov model for predicting next character (english letter) generation, given previous character (pairwise model).

The format of the data is an array of ordinal values (0-25) for the given character and have to probabilistic way to generate the next.

`P(c2|c1)`

where c1 is the given character and c2 is the following character

Although I understand this can done by counting and frequency generation, buy I am learning pyro so trying to understand how to setup this model so I can build upon it to create complex models.

Question:

- Is it necessary for me to convert the data to a tensor of shape (26,26) with counts in there to get things setup or can the model be designed to learn with one row at a time.
- Assuming the count matrix is setup, does the below code make sense:

```
num_characters = 26
def model(counts):
next_ch_probs = pyro.sample('next_ch_probs', dist.Dirichlet(torch.ones(num_characters,num_characters)/num_characters))
pyro.sample('counts', dist.Multinomial(26*26, next_ch_probs), obs=counts)
```

- If you have a better way of framing the problem or an example to share, please do. I am trying to learn.