Hi,

I’m trying to implement Bayesian Negative Binomial Regression using pyro’s SVI. Right now, it looks like the parameters related to w are not updating after the first iteration, and the loss stagnates. I’ve read previous posts but I still cannot figure it out.

Am I setting up my model wrong, or is this a matter of tuning hyperparameters?

```
pyro.clear_param_store()
n_steps = 100000
def model(X, y):
alpha = pyro.sample("alpha", dist.Gamma(1.0, 1.0))
w = pyro.sample("w", dist.Normal(torch.zeros(4), torch.ones(4)))
lambdas = torch.exp(torch.mv(X, w.clone().detach()))
eps = 10e-5
p = lambdas/(lambdas + 1)
p = torch.clamp(p, eps, 1 - eps)
return pyro.sample("y",
dist.NegativeBinomial(alpha, probs=p),
obs = y)
def guide(X, y):
w_prior_mean_q = pyro.param("w_prior_mean_q", torch.zeros(4)) #, constraint=constraints.positive)
w_prior_cov_q = pyro.param("w_prior_cov_q", torch.ones(4), constraint=constraints.positive)
a_q = pyro.param("a_q", torch.tensor(3.0),
constraint=constraints.positive)
b_q = pyro.param("b_q", torch.tensor(1.0),
constraint=constraints.positive)
alpha = pyro.sample("alpha", dist.Normal(a_q, b_q))
w = pyro.sample("w", dist.Normal(w_prior_mean_q, w_prior_cov_q))
# setup the optimizer
adam_params = {"lr": .01, "betas": (0.9, 0.999)}
optimizer = Adam(adam_params)
# setup the inference algorithm
svi = SVI(model, guide, optimizer, loss=Trace_ELBO())
params = []
# do gradient steps
loss = 0
for step in range(n_steps):
loss += svi.step(train_X.clone().detach(), train_y)
if step % (n_steps/100) == 0:
params.append([pyro.param('a_q'),
pyro.param('b_q'),
pyro.param('w_prior_mean_q'),
pyro.param('w_prior_cov_q')])
print(100 * step/n_steps,
loss / (n_steps/100)
)
loss = 0```
```